TH1: số có 1 chữ số (hiển nhiên thỏa mãn) có 8 số
TH2: số có 2 chữ số có \(7.7=49\) số
TH3: số có 3 chữ số có \(7.7.6=294\) số
TH4: số có 4 chữ số, gọi số đó là \(\overline{abcd}\)
- Với \(a=\left\{1;2\right\}\) (2 cách chọn) \(\Rightarrow\) bộ bcd chọn bất kì đều thỏa mãn \(\Rightarrow A_7^3\) cách chọn và hoán vị bộ bcd
\(\Rightarrow2.A_7^3\) số
- Với \(a=3\):
+ Nếu \(b< 6\Rightarrow\) b có 5 cách chọn (từ 0,1,2,4,5). Lúc này chọn c,d bất kì đều thỏa mãn \(\Rightarrow\) có \(A_6^2\) cách chọn cd
\(\Rightarrow5.A_6^2\) số
+ Nếu \(b=6\Rightarrow c=0\) , khi đó d có 2 cách chọn (từ 1;2)
\(\Rightarrow\) 2 số
Vậy tổng cộng ta lập được số số là: \(8+49+294+2.A_7^3+5.A_6^2+2=...\)