trong mặt phẳng với hệ trục tọa độ oxy cho d đi qua A(3;7) và song song với đường thẳng có phương trình y= 3x+1
a) viết phương trình đt d
b) tìm tọa độ giao điểm đt d với parabol (P) : y = x2
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
Bài 5: Cho hai hàm số (D): y = 3x - 1 và (d): y = -x +2
a) Vẽ (D) và (d) trên cùng mặt phẳng tọa độ Oxy
b) Tìm tọa độ giao điểm của (D) và (d) bằng phép toán
c) Viết phương trình đường thẳng m song song với (D) và đi qua điểm (1;5)
d) Viết phương trình đường thẳng song song với trục hoành và đi qua giao điểm của (d) và (D)
Trong mặt phẳng tọa độ Oxy cho đường thẳng: (d) y=(m-1)x +4( m là tham số, m ≠ 1)
Tim m để (d) song song với đường thẳng (d;) có phương trình y = \(\dfrac{1}{m-1}\)x + m + 2
Tìm m để (d) cắt hai trục tọa độ tại A và B sao cho diện tích OAB = 2
Câu 5: Viết phương trình đường thẳng đi qua điểm M(2;3) và song song với đường thẳng y = 2x+1 .
Câu 6: Viết phương trình đường thẳng vuông góc với đường thẳng y =\(\dfrac{2}{3}\)x+2 và cắt trục tung tại điểm có tung độ là −5.
1) Cho hai đường thẳng y=2x-3(d) và y=3x-2(d')
a) Lập phương trình đường thẳng song song với (d) và cắt (d') tại điểm có hoành độ là 2
b)Lập phương trình đường thẳng vuông góc với (d') và cắt (d) tại điểm có tung độ là -1
1) Cho hai đường thẳng y=2x-3(d) và y=3x-2(d')
a) Lập phương trình đường thẳng song song với (d) và cắt (d') tại điểm có hoành độ là 2
b)Lập phương trình đường thẳng vuông góc với (d') và cắt (d) tại điểm có tung độ là -1
Trong mặt phẳng Oxy cho (d1) : y = 2x-7 ; (d2) : y = -x-1.
a) Vẽ (d1),(d2)
b) Tìm tọa độ giao điểm của (d1) và (d2)
c) Viết phương trình đường thẳng (d3) song song với (d2) và cắt đường thẳng (d1) tại một điểm nằm trên trục tung.