Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng :
\(d_1:x-y=0\)
\(d_2:2x+y-1=0\)
Tìm tọa độ các đỉnh hình vuông ABCD biết rằng đỉnh A thuộc \(d_1\) , đỉnh C thuộc \(d_2\) và các đỉnh B, D thuộc trục hoành
Trong mặt phẳng tọa đọ Oxy, xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : \(\sqrt{3}x-y-\sqrt{3}\), các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp tam giác bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(0;2\right);B\left(-2;2\right);C\left(4;-2\right)\). Gọi H là chân đường cao kẻ từ B, M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
Trong mặt phẳng tọa độ Oxy cho điểm \(C\left(2;0\right)\) và elip (E) : \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)
Tìm tọa độ các điểm A, B thuộc (E) biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều
trên mặt phẳng tọa độ Oxy cho tam giác ABC có A(4;-1) và pt 2 đường phân giác BE:x-1=0, CF:x-y-1=0 . tìm tọa độ đỉnh B và C
Trong mặt phẳng tọa độ Oxy, cho các đường thẳng \(\Delta_1:x-2y-3=0\) và \(\Delta_2:x+y+1=0\). Tìm tọa độ điểm M thuộc đường thẳng \(\Delta_1\) sao cho khoảng cách từ điểm M đến đường thẳng \(\Delta_2\) bằng \(\dfrac{1}{\sqrt{2}}\)
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) : \(x^2+y^2+4x+4y+6=0\) và đường thẳng \(\Delta:x+my-2m+3=0\) với m là tham số thực :
a) Tìm tọa độ tâm I và tính bán kính R của đường tròn (C)
b) Tìm m để \(\Delta\) cắt (C) tại hai điểm phân biệt sao cho diện tích tam giác IAB đạt giá trị lớn nhất
Trong mặt phẳng Oxy cho tam giác ABC cân tại A có \(A\left(-1;4\right)\) và các đỉnh B, C thuộc đường thẳng \(\Delta:x-y-4=0\)
a) Tính khoảng các từ A đến đường thẳng \(\Delta\)
b) Xác định tọa dộ các điểm B và C biết diện tích tam giác ABC bằng 18
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng \(d:a-y-1=0\). Viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua đường thẳng d. Tìm tọa độ các giao điểm của (C) và (C') ?