Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Đức Huy

Trong mặt phẳng Oxy cho hình vuông ABCD có M, N lần lượt là trung điểm của các cạnh BC, CD. Tìm tọa độ đỉnh B, điểm M biết N(0;-2), đường thẳng AM có phương trình x+2y-2=0 và cạnh hình vuông bằng 4

Nguyễn Quốc Cường
5 tháng 4 2016 lúc 15:51

Gọi \(I=AM\cap BN\)\(\Delta BIM\) đồng dạng  \(\Delta ABM\)

suy ra \(AM\perp BN\)  nên \(BN:-2x-y+c=0\) 

\(N\left(0;-2\right)\Rightarrow c=-2\Rightarrow BN:2x-y-2=0\)

Tọa độ điểm I là nghiệm hệ phương trình :

\(\begin{cases}x+2y-2=0\\2x-y-2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}\) \(\Rightarrow I\left(\frac{6}{5};\frac{2}{5}\right)\)

Từ \(\Delta ABM\) vuông : \(BI=\frac{AB.BM}{\sqrt{AB^2+BM^2}}=\frac{4}{\sqrt{5}}\)

Tọa độ điểm \(B\left(x;y\right)\) thỏa mãn \(\begin{cases}B\in BN\\BI=\frac{4}{\sqrt{5}}\end{cases}\) \(\Rightarrow\begin{cases}2x-y-2=0\\\left(\frac{6}{5}-x\right)^2+\left(\frac{2}{5}-y\right)^2=\frac{16}{5}\end{cases}\)

Giải hệ ta được \(\begin{cases}x=2\\y=2\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{-6}{5}\end{cases}\) Suy ra \(B\left(2;2\right)\)    Loại \(\left(\frac{2}{5};-\frac{6}{5}\right)\)

Tọa đọ M(x;y) thỏa mãn \(\begin{cases}M\in AM\\IM=\sqrt{BM^2-BI^2}\end{cases}\)  \(\Rightarrow\begin{cases}x+2y-2=0\\\left(x-\frac{6}{5}\right)^2+\left(y-\frac{2}{5}\right)^2=\frac{4}{5}\end{cases}\)

Giải hệ ta được : \(\begin{cases}x=2\\y=0\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{4}{5}\end{cases}\) suy ra \(M_1\left(2;0\right);M_2\left(\frac{2}{5};\frac{4}{5}\right)\)

tiểu thư họ tống
8 tháng 4 2016 lúc 20:24

câu b

 

Cung Đường Vàng Nắng
1 tháng 6 2016 lúc 12:16

Vì sao loại B (2/5;-6/5) vậy????


Các câu hỏi tương tự
Huỳnh Cẩm Tiên
Xem chi tiết
Vy Au
Xem chi tiết
Thành Nam Võ
Xem chi tiết
Huyền
Xem chi tiết
Huyền
Xem chi tiết
Phan Thị Minh Trí
Xem chi tiết
trang trương
Xem chi tiết
Thomas Edison
Xem chi tiết
Slice Peace
Xem chi tiết