Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm \(I\left(1;-3\right)\), bán kính 2. Viết phương trình ảnh của đường tròn \(\left(I;2\right)\) qua phép đồng dạng có được từ việc thực hiện liên tiếp phép vị tự tâm O tỉ số 3 và phép đối xứng qua trục Ox ?
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-y-3=0\). Viết phương trình đường thẳng \(d_1\) là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp tịnh tiến theo vectơ \(\overrightarrow{v}=\left(-1;2\right)\) và phép quay tâm O góc quay \(-90^0\)
Trong mặt phẳng Oxy, cho đường tròn tâm \(I\left(3;-2\right)\), bán kính 3
a) Viết phương trình của đường tròn đó
b) Viết phương trình ảnh của đường tròn \(\left(I;3\right)\) qua phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(-2;1\right)\)
c) Viết phương trình ảnh của đường tròn \(\left(I;3\right)\) qua phép đối xứng qua trục Ox
d) Viết phương trình ảnh của đường tròn \(\left(I;3\right)\) qua phép đối xứng qua gốc tọa độ
Trong mặt phẳng hệ trục tọa độ Oxy, cho điểm I(2;1), \(\overrightarrow{v}=\left(1;1\right)\) và đường thẳng \(\Delta:x+2y-3=0\). Tìm phương trình đường thẳng \(\Delta'\) là ảnh của \(\Delta\) qua phép dời hình có được bằng cách thực hiện liên tiếp \(T_{\overrightarrow{v}}\) và \(Q_{\left(O,90^o\right)}\)
Trong mặt phẳng Oxy, cho đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay \(Q_{\left(O,-90^0\right)}\) với O là gốc tọa độ ?
Trong mặt phẳng Oxy cho đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=16\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay tâm O và gốc tọa độ với góc quay \(90^0\) ?
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-y-3=0\). Viết phương trình đường thẳng \(d_1\) là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm \(I\left(-1;2\right)\) và phép quay tâm O góc quay \(-90^0\)
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-5y+3=0\) và vectơ \(\overrightarrow{v}\left(2;3\right)\). Hãy viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
Trong mặt phẳng Oxy cho ba đường tròn :
\(\left(C_1\right):\left(x-1\right)^2+\left(y-3\right)^2=4\)
\(\left(C_2\right):\left(x+3\right)^2+\left(y-4\right)^2=4\)
\(\left(C_3\right):\left(x+1\right)^2+\left(y-5\right)^2=5\)
Trong hai đường tròn \(\left(C_2\right)\) và \(\left(C_3\right)\), đường tròn là ảnh của \(\left(C_1\right)\) qua phép tịnh tiến. Xác định phép tịnh tiến này ?