Dễ thấy d chứa điểm \(H\left(1;1\right)\) và \(OH\perp d\). Gọi H' là ảnh của H qua phép quay tâm O góc \(45^0\) thì \(H=\left(0;\sqrt{2}\right)\)
Từ đó suy ra d' phải qua H' và vuông góc với O'. Vậy phương trình của d' là \(y=\sqrt{2}\)
Dễ thấy d chứa điểm \(H\left(1;1\right)\) và \(OH\perp d\). Gọi H' là ảnh của H qua phép quay tâm O góc \(45^0\) thì \(H=\left(0;\sqrt{2}\right)\)
Từ đó suy ra d' phải qua H' và vuông góc với O'. Vậy phương trình của d' là \(y=\sqrt{2}\)
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-y-3=0\). Viết phương trình đường thẳng \(d_1\) là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm \(I\left(-1;2\right)\) và phép quay tâm O góc quay \(-90^0\)
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-y-3=0\). Viết phương trình đường thẳng \(d_1\) là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp tịnh tiến theo vectơ \(\overrightarrow{v}=\left(-1;2\right)\) và phép quay tâm O góc quay \(-90^0\)
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-2y-6=0\)
a) Viết phương trình của đường thẳng \(d_1\) là ảnh của d qua phép đối xứng qua trục Oy
b) Viết phương trình của đường thẳng \(d_2\) là ảnh của d qua phép đối xứng qua đường thẳng \(\Delta\) có phương trình \(x+y-2=0\)
Trong mặt phẳng Oxy cho đường thẳng \(d:2x-y+6=0\). Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép đối xứng tâm \(I\left(-2;1\right)\) ?
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-5y+3=0\) và vectơ \(\overrightarrow{v}\left(2;3\right)\). Hãy viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
Trong mặt phẳng Oxy cho đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=16\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay tâm O và gốc tọa độ với góc quay \(90^0\) ?
Trong mặt phẳng tọa độ Oxy cho điểm \(A\left(-1;2\right)\) và đường thẳng d có phương trình \(3x+y+1=0\). Tìm ảnh của A và d :
a) Qua phép tịnh tiến theo vectơ \(\overrightarrow{v}=\left(2;1\right)\)
b) Qua phép đối xứng qua trục Oy
c) Qua phép đối xứng qua gốc tọa độ
d) Qua phép quay tâm O góc \(90^0\)
Trong mặt phẳng Oxy, cho đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-2\right)^2=9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay \(Q_{\left(O,-90^0\right)}\) với O là gốc tọa độ ?
Trong mặt phẳng hệ trục tọa độ Oxy, cho điểm I(2;1), \(\overrightarrow{v}=\left(1;1\right)\) và đường thẳng \(\Delta:x+2y-3=0\). Tìm phương trình đường thẳng \(\Delta'\) là ảnh của \(\Delta\) qua phép dời hình có được bằng cách thực hiện liên tiếp \(T_{\overrightarrow{v}}\) và \(Q_{\left(O,90^o\right)}\)