trong mặt phẳng Oxy cho A(2,1) , B(-1,2) , C(3,-1) : a) viết phương trình các cạnh AB , BC , AC ; b) viết phương trình các đường cao kẻ từ các đỉnh A , B , C của tam giác ABC ; c) viết phương trình các đường trung tuyến kẻ từ các đỉnh A , B , C của tam giác ABC
trong mặt phẳng Oxy cho A(2,1) , B(-1,2) , C(3,-1) : a) viết phương trình các cạnh AB , BC , AC ; b) viết phương trình các đường cao kẻ từ các đỉnh A , B , C của tam giác ABC ; c) viết phương trình các đường trung tuyến kẻ từ các đỉnh A , B , C của tam giác ABC
trong mặt phẳng Oxy cho A(2;1) , B(-1;2) , C(3;-1) : a) viết phương trình các cạnh AB , BC .AC ; b) viết phương trình các đường cao kẻ từ các đỉnh A , B , C của tam giác ABC ; c) viết phương trình các đường trung tuyến kẻ từ các đỉnh A , B , C của tam giác ABC
trong mặt phẳng Oxy cho A(2;1) , B(-1;2) , C(3;-1) : a) viết phương trình các cạnh AB , BC .AC ; b) viết phương trình các đường cao kẻ từ các đỉnh A , B , C của tam giác ABC ; c) viết phương trình các đường trung tuyến kẻ từ các đỉnh A , B , C của tam giác ABC .
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;-3), phương trình đường phân giác trong đỉnh B là x+y-2=0 và phương trình đường trung tuyến hạ từ đỉnh C là x+8y-7=0. Tìm tọa độ các đỉnh B và C của tam giác ABC
Cho tam giác ABC có A(1;2), B(-3;4), C(2;0)
a) Viết phương trình đường trung tuyến kẻ từ B
b) Viết phương trình đường cao kẻ từ A
c) Viết phương trình đường trung trực của cạnh AB
(Mọi người giúp em bài này vs ạ. Em sắp thi rồi!!!)
Trong mặt phẳng tọa độ Oxy, cho các điểm D(2/5;9/5), E(2;5), F(0;4) lần lượt là chân đường cao kẻ từ các đỉnh A, B, C của tam giác nhọn ABC. Đường thẳng BC có phương trình là?
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .
cho tam giác ABC có phương trình các đường thẳng AB , AC , BC là : AB : 2x - 3y - 1 = 0 ; AC : x + 3y + 7 = 0 ; BC : 5x - 2y + 1 = 0 . Viết phương trình tổng quát của đường cao kẻ từ đỉnh B .