Vì G là trọng tâm của tam giác ABC nên
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.2 - 1 - 0 = 5\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.1 - 0 + 1 = 4\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.0 + 1 - 2 = - 1\end{array} \right.\)
Vậy tọa độ điểm C là \(\left( {5;4; - 1} \right)\)
Chọn A
Đúng 0
Bình luận (0)