Bài 2: Qua điểm M nằm bên ngoài ( ); R) Kẻ 2 tiếp tuyến MA, MB (A, B là tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O ( C nằm giữa D) ( *vẽ hình*)
a) CM: tứ giác MAOB nội tiếp và MO ⊥ AB
b) CM: MA . AD= MD . AC
c) Gọi I là chung điểm của dây cung CD và E là giao điểm của 2 đường thẳng AB và OI. Tính độ dài đường thẳng OE theo R khi OI = R3R3
d) Qua tâm O kẻ đườn thẳng ⊥ với OM cắt các đường thẳng MA, MB lần lượt tại P, Q. Tính vị trí điểm M để diện tích tam giác MPQ đạt giá trị nhỏ nhất
(mink đag cần gấp)
Cho góc xAy = 60 độ, đường tròn (O) tiếp xúc với tia Ax tại B, tiếp xúc với tia Ay tại C. Trên cung nhỏ BC của đường tròn (O) lấy điểm M, gọi D, E, F lần lượt là hình chiếu của điểm M trên BC, CA, AB. a. Chứng minh CDME là tứ giác nội tiếp b. Tính số đo góc EDF c. Chứng minh rằng MD^2= ME*MF
Cho đường tròn tâm O bán kính 2 cm từ điểm A bên ngoài đường tròn , vẽ 2 tiếp điểm AB và AC vuông góc với nhau (B;C là tiếp điểm ) . lấy điểm M thuộc cung BC . vẽ tiếp tuyến của đường tròn M tại 2 tiếp tuyến lần lượt ở D và E
a) tứ giác ABOC là hình gì
b) tình chu vi tam giác ADE
c) tính góc DOE
Bài 2: Qua điểm M nằm bên ngoài ( ); R) Kẻ 2 tiếp tuyến MA, MB (A, B là tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O ( C nằm giữa D)
a) CM: tứ giác MAOB nội tiếp và MO ⊥ AB
b) CM: MA . AD= MD . AC
c) Gọi I là chung điểm của dây cung CD và E là giao điểm của 2 đường thẳng AB và OI. Tính độ dài đường thẳng OE theo R khi OI = \(\dfrac{R}{3}\)
d) Qua tâm O kẻ đườn thẳng ⊥ với OM cắt các đường thẳng MA, MB lần lượt tại P, Q. Tính vị trí điểm M để diện tích tam giác MPQ đạt giá trị nhỏ nhất
(mink đag cần gấp)
Cho tam giác ABC nội tiếp đường tròn (o) đường kính BC . Vẽ dây cung AD của (o) vuông góc với đường kính BC tại H . Gọi M là trung điểm cạnh OC và I là trung điểm cạnh AC . từ M vẽ đường thẳng vuông góc với OC , đường thẳng này cắt tia OI tại N . Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS
a) c/m tam giác ABC vuông tại A và HA = HD
b) c/m : MN // SC và SC là tiếp tuyến của đường tròn (o)
c) gọi K là trung điểm cạnh HC , vẽ đường tròng đường kính AH cắt cạnh AK tại F . C/m BH . HC = AF . AK
d) Trên tia đối của tia BA lấy điểm E sao cho B là trung điểm cạnh AE . C/m ba điểm E,H,F thẳng hàng
Cho đường tròn ( O ; R ) có 2 đường kính AB , CD vuông góc nhau . Gọi M là điểm thuộc cung nhỏ AC , MB cắt CD tại E , MD cắt AB tại F. a ) Chứng minh tứ giác OFMC nội tiếp . b ) Tính diện tích hình quạt tròn OAC theo R. c ) Chứng minh BE.BM=2R2. d ) AC cắt MD tại G. Chứng minh GE//AB .
Cho △ABC nội tiếp (o), đường kính BC = 13cm. Vẽ đường cao AH của △ABC, biết AH = 4cm.
a) C/m: △ABC vuông và tính AH.
b) Vẽ (A;AH) cắt (o) tại D và E (E nằm trên cung AC)
DE cắt AH và AO lần lượt tại M và N.
C/m: AM.AH=AN.AO
c) Kẻ OK⊥AE (KϵAE).
C/m: AK.AE = AN.AO và M là trung điểm của AH.
GIÚP MÌNH VỚI!!!!!!!!!!!!!!!!!!
cho (o) đg kính ab=2r.gọi i là tđ oa,qua i kẻ mn vuông góc oa.điểm c thuộc cung nhỏ mb,ac cắt mn tại d a) cm BIDC nội tiếp b) CM: AD.AC =R^2