Tìm các số a, b, c biết rằng :
1. \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}\) và a - 2b + 4c = 13
2. 4a = 3b ; 7b = 5c va a - b + c = - 46
3. \(\frac{a}{2}=\frac{2b}{5}=\frac{4c}{7}\)và 3a + 5b + 7c = 123
4. \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\) và abc = -108
5. \(\frac{a}{4}=\frac{b}{6},\frac{b}{5}=\frac{c}{8}\)và 5a - 3b - 3c = -536
6. \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)và 3a - 5b + 7c = 86
7. 5a = 8b = 3c và a - 2b + c = 34
8. 2a = 3b = 5c và a + b -c = 95
9. 3a = 7b và a2 - b2 = 160
10. \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a2 + 3b2 - 2c2 = -16
các bạn tl từng câu một cũng đc, giúp mình nhé
Tìm các số a , b , c nếu :
a ) 5a - 3b -3c = - 536 và \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) 3a - 5b + 7c = 86 và \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
c ) a - 2b + c = 46 và \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
d ) 5a = 8b = 3c và a - 2b + c = 34
e ) 3a = 7b và a2 - b2 = 160
g ) a2 + 3b2 - 2c2 = - 16 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i ) a3 + b3 + c3 = 792 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
Tỉ số của hai số a và b là \(\frac{2}{7}\), tỉ số của hai số b và c là \(\frac{14}{15}\). Tỉ số a và c là:
Tỉ số của hai số a và b là \(\frac{2}{7}\) , tỉ số của 2 số b và c là \(\frac{14}{15}\) . Hỏi tỉ số của a và c
Giúp mình bài này với ạ!!
Mình đang gấp ạ
1/ Tìm các số a, b, c biết: a/2 =b/3=c/5 và a+2b-c=15
2/ Tìm a, b, c biết: 2a=3b ; 5b=7c và a-2b+c=8
3/ Cho hình chữ nhật có chu vi bằng chu vi của hình vuông có cạnh 7cm. Biết tỉ số giữa 2 cạnh của hcn là 5:2. Tính S của hcn
Cảm ơn trc ạ
1/ Tìm 2 phân số tối giản biết hiệu của chúng là \(\frac{3}{106}\) và các tử tỉ lệ với 3; 5. Các mẫu tỉ lệ với các số 4; 7.
2/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Hãy chứng tỏ:
a) \(\frac{a}{b}=\frac{c}{d}=\frac{-2a+7c}{-3b+7d}\)
b) \(\frac{a^2}{b^2}=\frac{3a^2-2ac}{2b^2-2bd}\)
a) Tìm 3 số a,b,c biết \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\) và a+b+c=-50
b) tìm 3 số a,b,c biết ab=c ; bc=4a ; ac=9b
Tìm hai số hữu tỉ a và b biết rằng : a-b=2(a+b)=\(3.\frac{a}{b}\)
Có tồn tại hay không hai số dương a và b khác nhau, sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}?\)