Trong các dãy số (\(u_n\)) cho dưới đây, dãy số nào bị chặn dưới, bị chặn trên và bị chặn ?
a) \(u_n=2n-n^2\)
b) \(u_n=n+\dfrac{1}{n}\)
c) \(u_n=\sqrt{n^2-4n+7}\)
d) \(u_n=\dfrac{1}{n^2-6n+11}\)
Cho dãy số (\(u_n\)) với \(u_n=1+\left(n-1\right).2^n\)
a) Viết năm số hạng đầu của dãy số
b) Tìm công thức truy hồi
c) Chứng minh \(\left(u_n\right)\) là dãy số tăng và bị chặn dưới
Xét tính bị chặn:
\(u_n=\dfrac{n^2+1}{2n^2-3}\)
Xét tính năng, giảm của các dãy số \(\left(u_n\right)\), biết :
a) \(u_n=\dfrac{1}{n}-2\)
b) \(u_n=\dfrac{n-1}{n+1}\)
c) \(u_n=\left(-1\right)^n\left(2^n+1\right)\)
d) \(u_n=\dfrac{2n+1}{5n+2}\)
Cho dãy số thực \(\left(u_n\right)\)xác định bởi: \(\left\{{}\begin{matrix}u_1=\sin1\\u_n=u_{n-1}+\dfrac{\sin n}{n^2},\forall n\in N,n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số xác định như trên là một dãy số bị chăn
Viết năm số hạng đầu và khảo sát tính năng, giảm của các dãy số \(\left(u_n\right)\), biết :
a) \(u_n=10^{1-2n}\)
b) \(u_n=3^n-7\)
c) \(u_n=\dfrac{2n+1}{n^2}\)
d) \(u_n=\dfrac{3^n\sqrt{n}}{2^n}\)
Cho dãy số \(\left(u_n\right)\) với \(u_n=n^2-4n+3\)
a) Viết công thức truy hồi của dãy số
b) Chứng minh dãy số bị chặn dưới
c) Tính tổng n \(n\) số hạng đầu của dãy đã cho
Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2}\end{matrix}\right.\) với \(n\ge1\)
a, Viết 4 số hạng đầu của dãy số
b, Chứng minh rằng \(u_n>1\) với \(n\ge1\)
c, Tìm CTTQ của dãy