Bài 2: Dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Trong các dãy số \(\left(u_n\right)\) sau, dãy số nào bị chặn dưới, bị chặn trên và bị chặn ?

a) \(u_n=2n^2-1\)

b) \(u_n=\dfrac{1}{n\left(n+2\right)}\)

c) \(u_n=\dfrac{1}{2n^2-1}\)

d) \(u_n=\sin n+\cos n\)

Minh Hải
9 tháng 4 2017 lúc 20:30
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n > . tức là luôn tồn tại n ≥ + 1 để 2 - 1 > M. b) Dễ thấy un > 0 với mọi n ε N* Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2. Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra . Vậy dãy số bị chặn 0 < un với mọi n ε N* c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra > 0 Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra ≤ 1. Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn. d) Ta có: sinn + cosn = √2sin(n + ), với mọi n. Do đó: -√2 ≤ sinn + cosn ≤ √2 với mọi n ε N* Vậy -√2 < un < √2, với mọi n ε N* .




Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Mai Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tâm Cao
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết