\(\overrightarrow{AB}=\left(-3;-3\right)=>AB:x+y-2=0=>y=x+2\)
Thay x = 2; y = 4 vào pt đường thẳng AB ta được 4 = 2 + 2 (luôn đúng )
=> điểm C thuộc đường thẳng AB , tương tự điểm B cũng thuộc đường thẳng AB
Vậy suy ra 3 điểm A,B,C thẳng hàng
\(\overrightarrow{AB}=\left(-3;-3\right)=>AB:x+y-2=0=>y=x+2\)
Thay x = 2; y = 4 vào pt đường thẳng AB ta được 4 = 2 + 2 (luôn đúng )
=> điểm C thuộc đường thẳng AB , tương tự điểm B cũng thuộc đường thẳng AB
Vậy suy ra 3 điểm A,B,C thẳng hàng
Trong mặt phẳng toạ độ Oxy cho bà điểm :
A( 2; -1 ) ; B( -1 ; 5 ) ; C(0 ; 3 )
Chứng minh ba điểm A, B, C thẳng hàng.
1) Trong mặt phẳng tọa độ Oxy cho 3 điểm A( 1; 2 ), B( -1; 1 ), C( 3; 0 ). Xác định tọa độ D sao cho ABCD là hình bình hành
2) Cho hàm số y=(a-2)x+2
a) Tìm a để khoảng cách từ gốc tọa độ đến đường thẳng bằng 1
b) Tìm a để khoảng cách từ gốc tọa độ đến đường thẳng đạt GTLN?
Trên mặt phẳng tọa độ Oxy cho 3 điểm A(1;-1), B(3;3), C(-1; -5)
a) Viết PT đường thẳng qua A và C
b) Chứng tỏ 3 điểm A, B, C thẳng hàng
trong mặt phẳng tọa độ Oxy cho đường thẳng d: 2x-y+3=0, điểm A có tọa độ (1;0), điểm B có tọa độ (2;1). tìm trên d điểm M sao cho MA+MB nhỏ nhất
Trong mặt phẳng tọa độ cho 3 điểm A(-2;2), B(3;\(\frac{9}{2}\)) và C(0;-2) . Viết phương trình đường thẳng (d) tiếp xúc với đường tròn ngoại tiếp tam giác ABC tại điểm A.
Trên mặt phẳng tọa độ Oxy cho hai đường thẳng :
(d1) : y = -2x +4 và (d2) : y = \(\dfrac{1}{2}\)x + b ( b>0)
Gọi A là giao điểm của (d1) với (d2) ; B,C lần lượt là giao điểm của Ox với (d1), (d2) . Tìm giá trị của b để AO là tia phân giác của góc BAC
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng Oxy, giả sử hai điểm A và B chạy trên Parabol (P): y=x\(^2\) sao cho A,B khác O(0;0) và OA vuông góc với OB. Giả sử I là trung điểm của đoạn thẳng AB.
a, Chứng minh rằng tọa độ của điểm I thõa mãn phương trình y=\(2x^2+1\)
b, Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định .
c, Xác định tọa độ các điểm A và B sao cho độ dài AB nhỏ nhất
Trong mặt phẳng tọa độ cho hai điểm A(0;-1) và B(1;2)
a) Viết phương trình đường thẳng đi qua A và B.
b) Điểm C (-1;-4) có nằm trên đường thẳng đó không?