Kẻ CD là tia đối của tia CA sao cho D \(\in\) By
Ta có Ax // By (theo đề bài)
^ ^
=> A = CDB = 50° (2 góc so le trong)
Ta có ^ACB = ^B + ^CDB (theo tính chất góc ngoài của một tam giác)
Hay ^ACB= 40° + 50°
^ACB = 90°
Kẻ CD là tia đối của tia CA sao cho D \(\in\) By
Ta có Ax // By (theo đề bài)
^ ^
=> A = CDB = 50° (2 góc so le trong)
Ta có ^ACB = ^B + ^CDB (theo tính chất góc ngoài của một tam giác)
Hay ^ACB= 40° + 50°
^ACB = 90°
Trên hình 49 có Ax song song với By, \(\widehat{CAx}=50\) , \(\widehat{CBy}=40\) . Tính \(\widehat{ACB}\) bằng cách xem nó là góc ngoài của 1 tam giác
Cho tam giác ABC có \(\widehat{B}=\widehat{C}=40^0\). Gọi Ax là tia phân giác của góc ngoài ở đỉnh A. Hãy chứng tỏ Ax // BC ?
Cho tam giác ABC có góc A = 80 độ, góc B = 50 độ, gọi Ax là tia đối của tia AB, Ay là tia phân giác của góc xAC.
a, tính góc ACB,CAx? chứng minh Ay song song BC.
b, Từ C kẻ tia Ct // AB, tia Ct cắt Ay tại E. Tính số đo các góc của tam giác AEC.
c, Qua B kẻ đường thẳng a vuông góc BC, từ A kẻ AD vuông góc a tại D. Chứng minh 3 điểm A, E, D thẳng hàng.
Cho tam giác ABC có \(\widehat{B}=\widehat{C}=50^0\). Gọi Am là tia phân giác của góc ngoài ở đỉnh A. Hãy chứng tỏ rằng Am // BC ?
Tam giác ABC có \(\widehat{B}=110^0,\widehat{C}=30^0\). Gọi Ax là tia đối của tia AC. Tia phân giác của góc BAx cắt đường thẳng BC tại K. Chứng minh rằng tam giác KAB có hai góc bằng nhau ?
Cho tam giác ABC có \(\widehat{A}=60^0;\widehat{C}=50^0\). Tia phân giác của góc B cắt AC ở D
Tính \(\widehat{ADB},\widehat{CDB}\) ?
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Tính \(\widehat{BIC}\) biết rằng :
a) \(\widehat{B}=80^0,\widehat{C}=40^0\)
b) \(\widehat{A}=80^0\)
c*) \(\widehat{A}=m^0\)
Cho tam giác ABC có \(\widehat{B}=80^0,\widehat{C}=30^0\). Tia phân giác của góc A cắt BC ở D. Tính \(\widehat{ADC},\widehat{ADB}\) ?
Cho tam giác ABC. Kẻ tia Ax là tia đối của tia AB, tia Ay là tia phân giác của \(\widehat{CAx}\). Hai tia phân giác của các góc \(\widehat{ABC}\) và \(\widehat{ACB}\) cắt nhau tại O. CM: \(\widehat{BOC}=\widehat{BAy}\)