a) Xét \(\Delta MHA\) và \(\Delta MHB\) có:
\(HA=HB\) (\(H\) thuộc trung trực của \(AB\))
\(\widehat{MHA}=\widehat{MHB}=90^0\)
MH cạnh chung nên \(\Delta MHA=\Delta MHB\) (c.g.c)
\(\Rightarrow\widehat{AMH}=\widehat{BMH}\)
Vậy \(MH\) là phân giác của \(\widehat{AMB}\)
b) Trên cạnh \(MB\) ta lấy \(E\) sao cho: \(MF=ME'\)
Xét \(\Delta FMP\) và \(\Delta E'MP\) có:
\(MF=ME'\)
\(\widehat{FMP}=\widehat{E'MP}\) (do \(\widehat{AMH}=\widehat{BMH}\))
\(MP\) cạnh chung nên \(\Delta FMP=\Delta E'MP\left(c.g.c\right)\)
\(\Rightarrow\widehat{FMP}=\widehat{E'MP}\) (1)
Gọi giao điểm của \(FE'\) với \(MH\) là \(K\)
Lại có \(\Delta PHA=\Delta PHB\) (c.g.c) (chứng minh tương tự như câu a)
\(\Rightarrow\widehat{APH}=\widehat{BPH}\)
Mà \(\widehat{APH}=\widehat{EPM}\) (đối đỉnh) và \(\widehat{BPH}=\widehat{FPM}\) (đối đỉnh)
\(\Rightarrow\widehat{FPM}=\widehat{EPM}\) (2)
Từ (1) và (2) suy ra \(\widehat{EPM}=\widehat{E'PM}\) hay \(E\) trùng với \(E'\)
Do đó \(MF=ME\) (3)
Lại có \(PF=PE'\) (do \(\Delta FMP=\Delta E'MP\))
Nên \(PF=PE\) (4) (do \(E'\) trùng với \(E\))
Từ (3) và (4) suy ra \(MH\) hay \(MP\) là trung trực của đoạn \(EF\)
c) Ta có: \(AF=AM-FM\)
\(BI=BM-EM\)
Mà \(AM=BM\) (\(M\) thuộc trung trực \(AB\))
\(FM=EM\) (cmt)
\(\Rightarrow AF=BE\)