tìm số tự nhiên N thỏa mãn điều kiện
\(2.2^2+3.2^3+4.2^4+...+\left(\left(n-1\right)^2\right)^{n-1}+n.3^n=2^{n+34}\)
Bài 4
Tìm số tự nhiên n thỏa mãn 2.2^2+3.2^3+4.2^4+....+n.2^n=2^n+11
Tính S theo n ( \(n\in\) N*)
\(S=2^{n-1}+2.2^{n-2}+3.2^{n-3}+...+\left(n-1\right).2+n\)
Cho hàm số \(y=f\left(x\right)=ax^2+bx+1\)
a) Biết f(1) = 1 ; f(-1) = 3 . Tìm a,b
b) với a,b tìm được ở câu a . Chứng minh rằng với mọi số tự nhiên n,n >1 thì phân số \(\dfrac{n}{f\left(n\right)}\) tối giản
đặt Pn= \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+....+n}\right)\)
Tìm tất cả các số nguyên dương n (n>1) sao cho \(\frac{1}{P_n}\)là số nguyên
Rút gọn:
a) 3^n+2 - 3^n+1 - 6.3^n
b) (3.2^n+2+2^n -2^n-1) : 5
Chứng minh rằng với số tự nhiên n ta có:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}\)
Chứng minh:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{5.7.9}+\dfrac{36}{9.11.13}+...+\dfrac{36}{25.27.29}< 3\)
\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\in< 1\left(n\in N,n\ge2\right)\)
\(D=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< 4\left(n\in N,n\ge2\right)\)
\(E=\dfrac{2!}{3!}+\dfrac{2!}{4!}+\dfrac{2!}{5!}+...+\dfrac{2!}{n!}< 1\left(n\in N,n\ge3\right)\)
Số các số tự nhiên n thỏa mãn: \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)