+ TH1 : x < 1 ta có :
/ x - 1 / + 3 = 2x
<=> -( x - 1 ) + 3 = 2x
<=> -x + 1 + 3 = 2x
<=> 3x = 4 <=> x = 4/3 ( KTM )
+ TH2 : x >= 1 ta có :
/ x - 1 / + 3 =2x
<=> x - 1 + 3 =2x
<=> x = 2 ( TM )
tính |x-1| + 3 = 2x
\(\left|x-1\right|+3=2x\) ( * )
Ta có: \(\left|x-1\right|=x-1\) nếu x-1 \(\ge\)0 \(\Leftrightarrow x\ge1\)
Khi đó ( * ) trở thành :
\(x-1+3=2x\)
\(\Leftrightarrow\) x-2x = 1-3
\(\Leftrightarrow\) -x = -2
\(\Leftrightarrow\) x=2 (tm)
Ta có : \(\left|x-1\right|\)=-(x-1) nếu x-1 < 0 \(\Leftrightarrow\)x <1
Khi đó ( * ) trở thành :
-x+1+3=2x
\(\Leftrightarrow\) -x-2x = -1-3
\(\Leftrightarrow\) -3x = -4
\(\Leftrightarrow\) x = \(\frac{4}{3}\)(không tm)
Vậy S = { 2 }