Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=>2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(=>2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(=>S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3072}{512}-\frac{3}{512}=\frac{3069}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Rightarrow2S=6+3+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=\left(6+3+\frac{3}{2^2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(\Rightarrow S=6-\frac{3}{2^9}=6-\frac{3}{512}=5\frac{509}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+....+\frac{3}{2^9}\)
\(S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^9}\right)\)
Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^8}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+....+\frac{1}{2^9}\right)\)
\(A=2-\frac{1}{2^9}\)
Thay A = \(2-\frac{1}{2^9}\) vào S ta có:
S = \(3.\left(2-\frac{1}{2^9}\right)=3.2-3\cdot\frac{1}{2^9}=6-\frac{3}{2^9}\)