\(S=\dfrac{2}{2\cdot6}+\dfrac{2}{6\cdot10}+...+\dfrac{2}{96\cdot100}\\ =\dfrac{1}{2}\left(\dfrac{4}{2\cdot6}+\dfrac{4}{6\cdot10}+...+\dfrac{4}{96\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{10}+...+\dfrac{1}{96}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}\cdot\dfrac{49}{100}\\ =\dfrac{49}{100}\)