Giải
S=1+2+22+23+....................+262+263
2S=2(1+2+22+23+.................+262+263)
2S=2+22+23+24+............................+263+264)
2S-S=(2+22+23+24+...................+263+264)-(1+2+22+23+.....................+262+263)
S=264-1
Ta có:\(2^{64}-1=\left(2-1\right)\left(2^{63}+2^{62}+2^{61}+...+1\right)\)
Do đó S\(=2^{64}-1\)
Ngắn gọn quá phải không dùng hđt:\(a^n-b^n\)
\(S=2^{64}-1\)
Vậy \(S=2^{64}-1\).
\(S=1+2+2^2+2^3+...+2^{62}+2^{63}\)
\(2S=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)
\(\Rightarrow S=2^{64}-1\)
Vậy \(S=2^{64}-1\).