Đặt \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3A=3\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)
\(3A=3+1+...+\frac{1}{3^4}\)
\(3A-A=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)
\(2A=3-\frac{1}{3^5}\)
\(A=\frac{3-\frac{1}{3^5}}{2}\)
Đặt \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(S=1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\)
\(S\times3=\left(1+\frac{1}{1\times3}+\frac{1}{3\times3}+\frac{1}{9\times3}+\frac{1}{27\times3}+\frac{1}{81\times3}\right)\times3\)
\(S\times3=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
Xét: \(S\times3-S=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(S\times2=3-\frac{1}{243}\)
\(S\times2=\frac{728}{243}\)
\(S=\frac{728}{243}\div2\)
\(S=\frac{364}{243}\)
Vậy \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{364}{243}\)