Sửa đề
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(A=\dfrac{1}{3}\left(\dfrac{3n+2}{6n+4}-\dfrac{2}{6n+4}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{6n+4}\right)=\dfrac{1}{3}\left(\dfrac{3n}{6n+4}\right)=\dfrac{3n}{18n+12}=\dfrac{3n}{3\left(6n+4\right)}=\dfrac{n}{6n+4}\)