\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{1}{8}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\)
Tính
B = \(\left(\dfrac{1}{4}-1\right)+\left(\dfrac{1}{9}-1\right)+\left(\dfrac{1}{16}-1\right)....\left(\dfrac{1}{400}-1\right)\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
Tính các tích sau:
a) \(P=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
b) \(Q=\left(\dfrac{1}{9}-1\right)\left(\dfrac{2}{9}-1\right)\left(\dfrac{3}{9}-1\right)...\left(\dfrac{19}{9}-1\right)\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{100}\right)\)
\(Tìm\) \(x\)∈\(Z\)\(,\) \(biết\)\(:\)
\(a\)) \(\left(x-20\right)+\left(x-19\right)+\left(x-18\right)+...+99+100=100\)
\(b\)) \(213-x.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right):\left(1-\dfrac{1}{2^{2020}}\right)=13\)
1. \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\)
2. \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+...+100}\right)\)
tính a, \(\dfrac{5.4^{15}.9^9-4.30^{20}8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
b, 1\(\dfrac{1}{30}\):\(\left(24\dfrac{1}{6}-24\dfrac{1}{5}\right)-\dfrac{1\dfrac{1}{2}-\dfrac{3}{4}}{4x-\dfrac{1}{2}}=\left(-1\dfrac{1}{15}\right):\left(8\dfrac{1}{5}-8\dfrac{1}{3}\right)\)