\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(pt\Leftrightarrow\dfrac{1}{100.99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{99.100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)
\(=\dfrac{1}{99.100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99.100}-\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-\dfrac{1}{100}-1-\dfrac{1}{99}\)
\(=-\dfrac{1}{100}-1=-\dfrac{101}{100}\)
\(\Rightarrow=\dfrac{1}{100.99}-\left(\dfrac{1}{99.98}+\dfrac{1}{99.97}+...+\dfrac{1}{2.1}\right)\)
\(\Rightarrow\dfrac{1}{100}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-....+\dfrac{1}{2}-1\right)\)
\(\Rightarrow\dfrac{1}{100}-\left(\dfrac{1}{99}-1\right)\)
\(\Rightarrow\dfrac{1}{100}-\dfrac{-98}{99}\)
=......... bn tính nhé