\(\sqrt{\dfrac{12^5}{3^5.4^3}}=\sqrt{\dfrac{\left(3.4\right)^5}{3^5.4^3}}=\sqrt{\dfrac{3^5.4^5}{3^5.4^3}}=\sqrt{4^2}=4\)
\(\sqrt{\dfrac{12^5}{3^5\cdot4^3}}=\sqrt{\dfrac{3^5\cdot4^5}{3^5\cdot4^3}=\sqrt{4^2}=4}\)
\(\sqrt{\dfrac{12^5}{3^5.4^3}}=\sqrt{\dfrac{\left(3.4\right)^5}{3^5.4^3}}=\sqrt{\dfrac{3^5.4^5}{3^5.4^3}}=\sqrt{4^2}=4\)
\(\sqrt{\dfrac{12^5}{3^5\cdot4^3}}=\sqrt{\dfrac{3^5\cdot4^5}{3^5\cdot4^3}=\sqrt{4^2}=4}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
* Chứng minh đẳng thức
B= \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}=\dfrac{3}{2}\)
* Chứng minh đẳng thức
\(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}=\dfrac{3}{2}\)
* Chứng minh đẳng thức
\(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+\sqrt{2}}=\dfrac{3}{2}\)
Thực hiện phép tính:
a. \(\dfrac{\sqrt{5}-\sqrt{7}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5-1}}\)
b. \(\left(\dfrac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{12}}\right)+\left(\dfrac{9+2\sqrt{14}}{\sqrt{7}+\sqrt{12}}\right)\)
Thực hiện phép tính:
a, \(\dfrac{\sqrt[]{5}-7}{\sqrt[]{5}+3}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
b.\(\left(\dfrac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{12}}\right)+\left(\dfrac{9+2\sqrt{14}}{\sqrt{7}+\sqrt{12}}\right)\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{72}-5\sqrt{2}+3\sqrt{12}\)
b. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-5\sqrt{2}\)
c. \(\dfrac{\sqrt{8}-2}{\sqrt{2}-1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{3}{\sqrt{3}}\)
d. \(\sqrt[3]{64}+\sqrt[3]{27}-2\sqrt[3]{-8}\)