S = \(\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{4068289}{2016.2018}\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{2017^2}{2016.2018}\\ =\dfrac{2.2017}{2018}\\
=\dfrac{2017}{1009}.\)
S = \(\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{4068289}{2016.2018}\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{2017^2}{2016.2018}\\ =\dfrac{2.2017}{2018}\\
=\dfrac{2017}{1009}.\)
câu 1 tính
\(A=\dfrac{1}{2}\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(1+\dfrac{1}{2015.2017}\right)\)
\(A=\dfrac{1}{2}\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2015.2017}\right)\)
HELP ME !!! THANK
tìm x biết: \(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+.....+\left|x+\dfrac{1}{97.99}\right|=50x\)
Chứng minh : A = \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)\(< \dfrac{1}{2}\)
Tìm x nguyên biết:
a)\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2x-1\right).\left(2x+1\right)}=\dfrac{49}{99}\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\dfrac{9^{1006}-1}{2}\)
Tim x, bt:\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{8}{17}\)
Bài 1. a, Cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)
So sánh A với \(\dfrac{-1}{9}\)
Bài 2. Cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)....\left(\dfrac{1}{2008}-1\right)\left(\dfrac{1}{2009}-1\right)\)
B = \(\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)....\left(-1\dfrac{1}{2007}\right)\left(-1\dfrac{1}{2008}\right)\)
Tính A . B ?
Cho A=\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right).\left(\dfrac{1}{2016}-1\right).\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right).\left(-1\dfrac{1}{2016}\right).\left(-1\dfrac{1}{2017}\right)\)
Tính M=A.B
Tính :
B = \(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+....+\left(-\dfrac{1}{7}\right)^{2018}\)