\(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2017}\\ S=\dfrac{\left(-1\right)^0}{7^0}+\dfrac{\left(-1\right)^1}{7^1}+\dfrac{\left(-1\right)^2}{7^2}+...+\dfrac{\left(-1\right)^{2017}}{7^{2017}}\\ S=\dfrac{1}{7^0}+\dfrac{-1}{7^1}+\dfrac{1}{7^2}+...+\dfrac{-1}{7^{2017}}\\ -7S=\dfrac{-7}{7^0}+\dfrac{7}{7^1}+\dfrac{-7}{7^2}+...+\dfrac{7}{7^{2017}}\\ -7S=\left(-7\right)+\dfrac{1}{7^0}+\dfrac{-1}{7^1}+...+\dfrac{1}{7^{2016}}\\ -7S-S=\left[\left(-7\right)+\dfrac{1}{7^0}+\dfrac{-1}{7^1}+...+\dfrac{1}{7^{2016}}\right]+\left(\dfrac{1}{7^0}+\dfrac{-1}{7^1}+\dfrac{1}{7^2}+...+\dfrac{-1}{7^{2017}}\right)\\ -8S=\left(-7\right)+\dfrac{-1}{2017}\\ -8S=-\left(7+\dfrac{1}{2017}\right)\\ 8S=7+\dfrac{1}{2017}\\ S=\dfrac{7+\dfrac{1}{2017}}{8}\)
Vậy ...