a) \(-\left(136-173\right)-64-63\)
\(=37-\left(64+37\right)\)
\(=37-101\)
\(=-64.\)
b) \(A=3^{100}-3^{99}+3^{98}-...-3+1\)
\(\Rightarrow3A=3^{101}-3^{100}+3^{99}-...-3^2+3\)
\(\Rightarrow3A+A=\left(3^{101}-3^{100}+3^{99}-...-3^2+3\right)+\left(3^{100}-3^{99}+3^{98}-...-3+1\right)\)
\(\Rightarrow4A=3^{101}+1\)
\(\Rightarrow A=\dfrac{3^{101}+1}{4}\)