a. Ta có x2 - 4 = 0
=> x2 = 4
=> x = 2 hoặc x = -2
b. Ta có (x+3)(2x-1)
=>\(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
a,f(x)=x2-4
f(x) = 0
x2 - 4 = 0
x2 = 0 + 4
x2 = 4
=> x = 2
=> x = 2 là nghiệm của đa thức f(x)
`a)f(x)=x^2-4=0`
`x^2=4`
`x^2=(+-2)^2`
Vậy `x=-2;2`
`b)g(x)=(x+3)(2x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
a) f(x) = \(x^2-4\) = 0
\(x^2-4=0\)
\(x^2=0+4\)
\(x^2=4\)
\(x=2;-2\)
b) g(x)=(x+3)(2x-1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
A, cho f(x)=0 ta có :
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
B, cho g(x) =0 ta có :
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)