giải pt sau
a) \(x^2-16+64=0\)
b)\(4x^2=36x-81\)
c) \(\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
d) \(x^2-2x+1=4\)
a, Rút gọn biểu thức \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
b, Tính giá trị biểu thức Q = \(\dfrac{a^6-2a^5+a-2}{a^5+1}\)biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\)và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y-z\right)}\)
Giúp em với ạ
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
b)\(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{6}-\sqrt{2}\right)\left(a-\sqrt{ab}\right)}{\left(a\sqrt{a}-a\right)\left(a-b\right)}\) (Với a,b >0 và a khác 1)
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)
\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{\left(x-4\right)}{x\left(x+2\right)}=0\)
\(\frac{1}{x-2}\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Cho \(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
a) ĐKXĐ , Rút Gọn
b)So sánh A với 1/A
Nhìn bài toán xong còn bạn nào có thể làm cho mình ko
1. x=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)
2.Chứng minh: a + b + c = 2019 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2019\) thì 1 trong 3 số phải có 1 số bằng 2019
3. Giải
a, \(\left|x-2\right|\cdot\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x+2\right)=4\)
b, \(\frac{15x}{x^2-3x+4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)