Lời giải:
Ta có:
Áp dụng công thức lượng giác: \(\sin (a-b)=\sin a\cos b-\cos a\sin b\)
thì:
\(\sqrt{3}\sin x-\cos x=-2\left(\frac{1}{2}\cos x-\frac{\sqrt{3}}{2}\sin x\right)=-2\left(\sin \frac{\pi}{6}\cos x-\cos \frac{\pi}{6}\sin x\right)\)
\(=-2\sin \left(\frac{\pi}{6}-x\right)\)
Do đó: \(\lim_{x\to \frac{\pi}{6}}\frac{\sqrt{3}\sin x-\cos x}{\sin (\frac{\pi}{3}-2x)}=-2\lim_{x\to \frac{\pi}{6}}\frac{\sin \left ( \frac{\pi}{6}-x \right )}{\sin \left [ 2(\frac{\pi}{6}-x) \right ]}\)
\(=-\lim_{x\to \frac{\pi}{6}}\frac{\sin \left ( \frac{\pi}{6}-x \right )}{\frac{\pi}{6}-x}.\lim_{x\to \frac{\pi}{6}}\frac{1}{\frac{\sin\left [ 2(\frac{\pi}{6}-x) \right ]}{2(\frac{\pi}{6}-x)}}=-1.1.1=-1\)
(sử dụng công thức \(\lim_{t\to 0} \frac{\sin t}{t}=1\) . Trong TH bài toán \(x\to \frac{\pi}{6}\Rightarrow \frac{\pi}{6}-x\to 0\) )