\(x=71\Leftrightarrow x-1=70\\ \Leftrightarrow A=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\\ A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2-x+x+34=34\)
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(=x^4\left(x-71\right)+x^3\left(x-71\right)+x^2\left(x-71\right)+x^2\left(x-71\right)+x\left(x-71\right)+x+34\)
\(=x^4\left(71-71\right)+...+x\left(71-71\right)+71+34\)
\(=x^4.0+...+x.0+105=105\)
Vì x=71
⇒70=x-1
Thay 70=x-1 ta có:
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(=x+34\)
\(=70+34\)
\(=104\)
x=71⇔x−1=70
⇔A=x5−(x−1)x4−(x−1)x3−(x−1)x2−(x−1)x+34
A=x5−x5+x4−x4+x3−x3+x2−x2−x+x+34=34