Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khanh Hoa

Tính giá trị của biểu thức :

A=\(x^{10}-25x^9+25x^8-25x^7+...-25^3+25x^2-25x+25\) với x=24

B=\(x^3-30x^2-31x+1\), với x=31

C= \(x^5-15x^4+16x^3-29x^2+13x\), với x=14

D. Nếu (-2+\(x^2\))(-2+\(x^2\))(-2+\(x^2\))(-2+\(x^2\))(-2+\(x^2\))=1 thì x bằng bn?

Yukru
25 tháng 8 2018 lúc 15:19

a) Với x = 24

=> x + 1 = 24 (1)

Thay (1) vào A ta được:

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)

\(A=1\)

b) Với x = 31

=> x - 1 = 30 (1)

Thay (1) vào B ta được

\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)

\(B=x^3-x^3+x^2-x^2+x+1\)

\(B=x+1\)

\(B=31+1=32\)

c) Với x = 14

=> x + 1 = 15

x + 2 = 16

2x + 1 = 29

x - 1 = 13

Thay tất cả biểu thức trên vào C ta được

\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(C=-x\)

\(C=-14\)

d) Ta có:

\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)

\(\Rightarrow\left(-2+x^2\right)^5=1\)

\(\Rightarrow-2+x^2=1\)

\(\Rightarrow x^2=1+2=3\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)


Các câu hỏi tương tự
Mimi
Xem chi tiết
Hằng Nguyễn Thị Thúyl
Xem chi tiết
cam linh
Xem chi tiết
Linh Khánh
Xem chi tiết
Jimin
Xem chi tiết
vy hạ
Xem chi tiết
Vương Minh Ngọc
Xem chi tiết
Lê Nhật Anh
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết