Bài 4: Liên hệ giữa phép chia và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Duy Thiệu

Tính giá trị của biểu thức

A=\(\dfrac{1+2x}{1+\sqrt{1+2x}}+\dfrac{1-2x}{1-\sqrt{1-2x}}\) với x=\(\dfrac{\sqrt{3}}{4}\)

B=\(\dfrac{2b\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}\right)\) và a>0,b>0

C=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1

Akai Haruma
16 tháng 7 2018 lúc 15:56

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

Akai Haruma
16 tháng 7 2018 lúc 16:23

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)

Akai Haruma
16 tháng 7 2018 lúc 16:43

C)

\(2x=\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\Rightarrow 4x^2=\frac{1-a}{a}+\frac{a}{1-a}-2\)

\(\Rightarrow 4(x^2+1)=\frac{1-a}{a}+\frac{a}{1-a}+2=(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}})^2\)

\(\Rightarrow \sqrt{4(x^2+1)}=\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}\)

Khi đó:

\(C=\frac{2a\sqrt{4(1+x^2)}}{\sqrt{4(x^2+1)}-2x}=\frac{2a\left ( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}} \right )}{\sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}}-(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}})}=\frac{a\left ( \sqrt{\frac{1-a}{a}}+\sqrt{\frac{a}{1-a}} \right )}{\sqrt{\frac{a}{1-a}}}\)

\(=\frac{\frac{a(1-a+a)}{\sqrt{a(1-a)}}}{\sqrt{\frac{a}{1-a}}}=1\)

Nguyễn Trần Duy Thiệu
16 tháng 7 2018 lúc 11:02

Akai Haruma giúp e với


Các câu hỏi tương tự
Nguyễn Quỳnh Chi
Xem chi tiết
WHY.
Xem chi tiết
Bảo
Xem chi tiết
Võ Thanh Tùng
Xem chi tiết
illumina
Xem chi tiết
khanh hoa
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Trân Vũ
Xem chi tiết