\(\left(\dfrac{1-a^3}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)=\left[\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]=\left(1+2\sqrt{a}+a\right).\dfrac{1}{1+\sqrt{a}}=\left(1+\sqrt{a}\right)^2.\dfrac{1}{1+\sqrt{a}}=1+\sqrt{a}\)