Tính giá trị biểu thức :
a . A = x2y - y + xy2 -x tại x = -5 ; y = 2
b . B = 2x + xy2 - x2y - 2y tại x = -\(\frac{1}{2}\) ; y = -\(\frac{1}{3}\)
c . C = xy - 4y - 5x + 20 tại x = 14 ; y = 5,5
Tính giá trị của biểu thức:
a) A= x2 + 2xy - 3x3 + 2y3 + 3x3 - y3 tại x= 5 và y= 4
b) B= xy - x2y2 + x4y4 - x6y6 + x8y8 tại x= -1 và y= -1
1. Cho \(x,y\ne0\). Chứng minh giá trị của biểu thức A không phụ thuộc vào giá trị của biến
\(A=\frac{2}{xy}\div\left(\frac{1}{x}-\frac{1}{y}-\frac{x^2+y^2}{x^2-2xy+y^2}\right)\)
2. Cho \(a^3+b^3+c^3=3abc\) và \(a,b,c\ne0\). Tính giá trị biểu thức:
\(C=\left(\frac{a}{b}+1\right)\cdot\left(\frac{b}{c}+1\right)\cdot\left(\frac{c}{a}+1\right)\)
Rút gọn rồi tính giá trị của biểu thức:
a) \(E=x\left(x-y\right)+y\left(x+y\right)\) tại \(x=\frac{-1}{2};y=3\)
b) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\) tại \(x=15\)
c) \(B=5x \left(x-4y\right)-4y\left(y-5x\right)\) tại \(x=\frac{1}{5};y=\frac{-1}{2}\)
d) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\) tại \(x=\frac{1}{2};y=2\)
e) \(D=\left(y^2+2\right)\left(y-4\right)-\left(2y^2+1\right)\left(\frac{1}{2}y-2\right)\) tại \(y=2\)
Bài 1: Tính giá trị biểu thức sau: a) B=3x^3-2y^3-6x^2y^2+xy tại x=2/3, y=1/2 b) C=2x+xy^2-x^2y-2y tại x=-1/2, y=-1/3
* Dạng toán về phép chia đa thức
Bài 9.Làm phép chia:
a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)
Bài 10: Làm tính chia
1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)
Bài 11:
1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5
2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1
3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.
Bài 12: Tìm giá trị nhỏ nhất của biểu thức
1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28
Bài 13: Tìm giá trị lớn nhất của biểu thức
1. A = 4x –x2+ 3 2. B = –x2+ 6x –11
Bài 14: CMR
1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên
3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x
Chương II
* Dạng toán rút gọn phân thức
Bài 1.Rút gọn phân thức:a. 3x(1 - x)/2(x-1) b.6x^2y^2/8xy^5 c3(x-y)(x-z)^2/6(x-y)(x-z)
Bài 2: Rút gọn các phân thức sau:a)x^2-16/4x-x^2(x khác 0,x khác 4) b)x^2+4x+3/2x+6(x khác -3) c) 15x(x+y)^3/5y(x+y)^2(y+(x+y) khác 0). d)5(x-y)-3(y-x)/10(10(x-y)(x khác y) 2x+2y+5x+5y/2x+2y-5x-5y(x khác -y) f)15x(x+y)^3/5y(x+y)^2(x khác y,y khác 0)
Bài 3: Rút gọn, rồi tính giá trị các phân thức sau:
a) A=(2x^2+2x)(x-2)^2/(x^3-4x)(x+1) với x=1/2 b)B=x^3-x^2y+xy2/x^3+y^3 với x=-5,y=10
Bài 4;Rút gọn các phân thức sau:
a) (a+b)^/a+b+c b) a^2+b^2-c^2+2ab/a^2-b^2+c^2+2ac c) 2x^3-7x^2-12x+45/3x^3-19x^2+33x-9
1.CMR : Giá trị của biểu thức sau không phụ thuộc vào giá trị của biến y
B=\(\frac{2}{3}x^2y^3:\)\(\left(\frac{-1}{3}xy\right)+2x\left(y-1\right)\left(y+1\right)\)
2. Tím STN n để đơn thức A chia hết cho đơn thức B
A= 4xn+1y2: B= 3x3yn-1
bài 2.Thực hiện các phép tính.
a.(x2+\(\frac{2}{5}y\) ).(x2-\(\frac{2}{5}y\) )
b.(2x+y2)3
c.(3x2-2y)3
d.(x+4)(x2-4x+16)
e.(x2-\(\frac{1}{3}\) ).(x4+\(\frac{1}{3}x^2+\frac{1}{9}\) )
Phân tích các đa thức sau thành nhân tử .
1 . B = 2x + xy2 - x2y - 2y
2 . C = xy - 4y - 5x + 20