\(\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{y-5x}{x\left(y+5x\right)}\)
\(\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{y-5x}{x\left(y+5x\right)}\)
Tính
\(\dfrac{y}{xy-5x^2}-\dfrac{15y-25x}{y^2-25x^2}\)
Thực hiện phép tính
3. \(\dfrac{y}{xy-5y^2}-\dfrac{15y-25x}{y^2-25x^2}\)
4. \(\dfrac{4-2x+x^2}{2+x}-2-x\)
Dùng quy tắc đổi dấu rồi thực hiện các phép tính :
a) \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)
b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
5. a) \(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)};\) b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
đúng quy tắc đổi dấu và thực hiện phép tính
\(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
làm tính trừ \(\dfrac{5x+y}{xy-5x^2}\)-\(\dfrac{35x^2+8xy+y^2}{xy^225x^3}\)
thực hiện phép tính \(\dfrac{x^3+6x^2-25}{x^3+3x^2-10x}\)-\(\dfrac{x+5}{2x-x^2}\)
1) thực hiện phép tính
a) \(\dfrac{x-3}{4x+4}-\dfrac{x-1}{6x-30}\)
b) \(\dfrac{1}{x-5x^2}-\dfrac{25x-15}{25x^2-1}\)
c) \(\dfrac{x+9y}{x^2-9y^2}-\dfrac{3y}{x^2-3xy}\)
d) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}-\dfrac{x+3}{1-x^2}\)
e) \(\dfrac{3\left(x-2\right)}{x^2-2x+1}-\dfrac{6}{x^2-1}-\dfrac{3x-2}{1-x^2}\)
Làm tính trừ phân thức :
a) \(\dfrac{3x-2}{2xy}-\dfrac{7x-4}{2xy}\)
b) \(\dfrac{3x+5}{4x^3y}-\dfrac{5-15x}{4x^3y}\)
c) \(\dfrac{4x+7}{2x+2}-\dfrac{3x+6}{2x+2}\)
d) \(\dfrac{9x+5}{2\left(x-1\right)\left(x+3\right)^2}-\dfrac{5x-7}{2\left(x-1\right)\left(x+3\right)^2}\)
e) \(\dfrac{xy}{x^2-y^2}-\dfrac{x^2}{y^2-x^2}\)
f) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)
g)\(\dfrac{x}{5x+5}-\dfrac{x}{10x-10}\)
h) \(\dfrac{x+9}{x^2-9}-\dfrac{3}{x^2+3x}\)
\(\dfrac{5x+y^2}{x^2y}\)-\(\dfrac{5y-x^2}{xy^2}\)