\(\dfrac{\sqrt{3^2}+39^2}{\sqrt{7^2+91^2}}\)=\(\dfrac{\sqrt{42^2}}{\sqrt{98^2}}=\dfrac{42}{98}=\dfrac{3}{7}\)
\(\dfrac{\sqrt{3^2}+39^2}{\sqrt{7^2+91^2}}\)=\(\dfrac{\sqrt{42^2}}{\sqrt{98^2}}=\dfrac{42}{98}=\dfrac{3}{7}\)
tính:\(\dfrac{\sqrt{3^2+39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)
tính:\(\dfrac{\sqrt{3^2+39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)=
tính:
\(\dfrac{\sqrt{3^2+39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)
a,\(\dfrac{5^4.20^4}{25^5.4^5}\) b,\(\dfrac{\left(5^4-5^3\right)^3}{125^4}\) c,\(\sqrt{\left(2,5-0,7\right)^2}\) d,\(\dfrac{\sqrt{3^2+\sqrt{39^2}}}{\sqrt{7^2+\sqrt{91^2}}}1\)
Ai biết rút gọn biểu thức này k ạ??
Giups mình với!!! Cảm ơn nhiều ạ!!
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
Bài 3: Thực hiện phép tính:
a) \(9,2.2\frac{1}{2}.-\left(2.125-1\frac{5}{12}\right):\frac{1}{4}\)
b) \(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{59-10-\sqrt{91^2}}}\)
c) \(\frac{5}{18}-1,456:\frac{7}{25}+4,5.\frac{4}{5}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
1. Tính giá trị biểu thức sau bằng cách hợp lí
\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
Tính giá trị biểu thức = cách hợp lí:
A = \(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)