=\(\dfrac{5-\sqrt{5}}{\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
=\(\dfrac{5-\sqrt{5}}{\sqrt{5}+\sqrt{5}+1}\)
=\(\dfrac{5-\sqrt{5}}{2\sqrt{5}+1}\)
=\(\dfrac{\left(5-\sqrt{5}\right)\left(2\sqrt{5}-1\right)}{19}\)
=\(\dfrac{11\sqrt{5}-15}{9}\)
=\(\dfrac{5-\sqrt{5}}{\sqrt{5}+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
=\(\dfrac{5-\sqrt{5}}{\sqrt{5}+\sqrt{5}+1}\)
=\(\dfrac{5-\sqrt{5}}{2\sqrt{5}+1}\)
=\(\dfrac{\left(5-\sqrt{5}\right)\left(2\sqrt{5}-1\right)}{19}\)
=\(\dfrac{11\sqrt{5}-15}{9}\)
Tính:
\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{2+\sqrt{5}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
Tính:
\(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(\dfrac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}-\dfrac{2}{1-\sqrt{3}}\)
\(\dfrac{4}{\sqrt{6}+\sqrt{2}}-\dfrac{\sqrt{54}+\sqrt{2}}{\sqrt{3}+1}\)
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{20}{5+\sqrt{5}}-\sqrt{20}\)
Bài 2
\(\sqrt{25x^2-10x+1}=\sqrt{4x^2+8x+4}\)
\(\sqrt{x^2-3}+1=x\)
\(\sqrt{7-2x}=\sqrt{x^2+7}\)
\(\sqrt{9x-27}+\dfrac{1}{2}\sqrt{4x-12}-9\sqrt{\dfrac{x-3}{9}}=2\)
Tính giá trị các biểu thức sau
1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
2.\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+\dfrac{1}{5\sqrt{4}+4\sqrt{5}}+\dfrac{1}{6\sqrt{5}+5\sqrt{6}}+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\)
giúp mk vs ạ
\(\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}\)
* Tính giá trị của biểu thức:
a. A=\(2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}\)
b. B=\(\sqrt{\left(1-\sqrt{5}\right)^2}+\sqrt{6+2\sqrt{5}}\)
c. C=\(\dfrac{1}{2-\sqrt{6}}+\dfrac{1}{2+\sqrt{6}}\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
\(b.\dfrac{\sqrt{\dfrac{5}{3}}+\sqrt{\dfrac{3}{5}}-2}{\sqrt{\dfrac{5}{3}}-\sqrt{\dfrac{3}{5}}}\)
Rút gọn biểu thức sau:
\(A=\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\\ B=\sqrt{\dfrac{5+2\sqrt{6}}{5-\sqrt{6}}}+\sqrt{\dfrac{5-2\sqrt{6}}{5+\sqrt{6}}}\)