\(A=1+5+5^2+..+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{51}\)
\(\Rightarrow5A-A=\)\(\left(5+5^2+..+5^{51}\right)-\left(1+5+..+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
Ta có : A = 1 + 5 + 52 + 53 + ... + 550
=> 5A = 5 + 52 + 53 + ... + 551
=> 5A – A =( (5 + 52 + 53 + ... + 551 ) – (1 + 5 + 52 + 53 + ... + 550) )
=> 4A = 551 – 1
=> A = 551 – 1 : 4
A = 1 + 5 + 52 + ... + 550
5A = 5 + 52 + 53 + ... + 550 + 551
5A – A = ( 5 + 52 + 53 + 54 + ... + 550 + 551 ) – ( 1 + 5 + 52 + 53 + 54 + ... + 550 )
4A = 551 –1
A =
A = 1 + 5 + 52 + ... + 550
\(\Rightarrow\) 5A = 5 + 52 + 53 + ... + 550 + 551
\(\Rightarrow\) 5A – A = ( 5 + 52 + 53 + 54 + ... + 550 + 551 ) – ( 1 + 5 + 52 + 53 + 54 + ... + 550 )
\(\Rightarrow\) 4A = 551 –1
\(\Rightarrow\) A = \(\frac{5^{51}-1}{4}\)