Lời giải:
\(A=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}.....\frac{n+1-1}{n+1}=\frac{1.2.3....n}{2.3.4...n(n+1)}=\frac{1}{n+1}\)
Lời giải:
\(A=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}.....\frac{n+1-1}{n+1}=\frac{1.2.3....n}{2.3.4...n(n+1)}=\frac{1}{n+1}\)
Thực hiện phép tính theo cách hợp lí :
a, \([6.\left(-\frac{1}{3}\right)^2-3.\left(-\frac{1}{3}\right)+1]:\left(-\frac{1}{3}-1\right)\)
b, \(\frac{\left(\frac{2}{3}\right)^3.\left(-\frac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2.\left(-\frac{5}{12}\right)^3}\)
HELP ME ! GẤP GẤP GẤP ! GIẢI ĐƯỢC TICK LÌN NA !
Rút gọn biểu thức:
\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)\) \(.....\left(1-\frac{1}{n^2}\right)\)
Tính tổng sau
1) B= 1.2+2.3+3.4+......+99.100
2) C= \(1^2+2^2+3^2+...+99^2\)
3) D= \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{n^2}\right)\)
4) E=\(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^{100}}\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
tính: \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
Tìm x biết: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....................+\frac{1}{\left(x-1\right).x}+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2016}\left(x\in N\right)\)
1.thực hiện phép tính
a.\(25.\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2.\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
b.\(35^1_6:\left(\frac{-4}{5}\right)-46^1_6:\left(\frac{-4}{5}\right)\)
c.\(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
d.\(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}.\left(\frac{1}{36}-\frac{5}{12}\right)\)
e.\(\frac{1}{6}+\frac{5}{6}.\frac{3}{2}-\frac{3}{2}+1\)
f.\(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(\frac{-1}{5}\right):\left(-3\right)\)
Bài 31 : Tính :
a) \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
b) \(\left(-\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
c) \(\text{[}\left(0,1\right)^2\text{]}^0+\text{[}\left(\frac{1}{7}\right)^1\text{]}^2.\frac{1}{49}.\text{[}\left(2^3\right)^3:2^5\text{]}\)
Mong các cao nhân giúp ak , đang cần gấp
A=\(\left(3\frac{1}{3}+2,5\right):\left(3\frac{1}{6}-4\frac{1}{5}\right)-\frac{11}{31}\)
B=\(\left(-6\right).10:\left[-0,25+\frac{1}{2}:\left(-2\right)\right]+1\frac{3}{4}\)