Rút gọn:
A = \(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
B = \(\dfrac{3\sqrt{2}+\sqrt{11}}{\sqrt{2}+\sqrt{6+\sqrt{11}}}+\dfrac{3\sqrt{2}-\sqrt{11}}{\sqrt{2}-\sqrt{6-\sqrt{11}}}+18\)
C = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2n+1}+\sqrt{2n+3}}\)với n thuộc N*
D = \(\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
E=\(\dfrac{\left(4+\sqrt{3}\right)}{\sqrt[]{1}+\sqrt{3}}+\dfrac{\left(8+\sqrt{15}\right)}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
F = \(\left(\dfrac{2a+1}{a\sqrt{a}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\) với a >= 0 và a khác 1
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
* Rút gọn biểu thức
a. \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
d. \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
a) \(\sqrt{\left(3-\sqrt{5}^2\right)}+\dfrac{4}{\sqrt{5}-1}\)
b) \(\dfrac{1}{2-\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
* Thực hiện phép tính.
a.\(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)
b.\(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)
c.\(\left(\dfrac{6-2\sqrt{2}}{3-\sqrt{2}}-\dfrac{5}{\sqrt{5}}\right).\dfrac{1}{2-\sqrt{5}}\)
d.\(\sqrt{\left(2-\sqrt{5}\right)^2-\sqrt{5}}\)
rút gọn biểu thức
a.\(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b.\(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c.\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d.\(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
Tính:
\(A=\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
\(B=\dfrac{1}{\sqrt{2}-1}+\dfrac{14}{3+\sqrt{2}}\)
\(C=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(D=\sqrt{\left(1-\sqrt{2}\right)^2}-3\sqrt{18}+4\sqrt{\dfrac{1}{2}}\)
\(A=\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}+2\sqrt{2}\\ B=\left(5+2\sqrt{6}\right)\cdot\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)
\(C=\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
\(D=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}+\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)