a,A =\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{199}-\frac{1}{200}\)
= 1-\(\frac{1}{200}\)
=\(\frac{199}{200}\)
b, B=\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{2018.2020}\)
=3.(\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+..+\frac{1}{2018.2020}\))
=3(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+..+\frac{1}{2018}-\frac{1}{2020}\))
= 3.(\(\frac{1}{2}-\frac{1}{2020}\))
=\(\frac{6057}{2020}\)
\(B=3\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2018.2020}\right)\)
\(B=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)
\(B=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(B=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)=...\)