tính các giá trị lượng giác của góc x khi biết \(\cos\dfrac{\alpha}{2}=\dfrac{4}{5}\) và 0<x<\(\dfrac{\pi}{2}\)
Chứng minh đẳng thức: cos (\(\dfrac{\Pi}{2}\)- a) sin (\(\dfrac{\Pi}{2}-b\)) - sin(a - b) = cos a. sin b
Rút gọn biểu thức \(A=cos\left(x-7\pi\right)-sin\left(x-\frac{5\pi}{2}\right)+tan^2\left(\frac{3\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+x\right)}\) với sinx\(\ne\)0
tính
a)A= \(sin^2\frac{\pi}{3}+sin^2\frac{\pi}{9}+sin^2\frac{7\pi}{18}+sin^2\frac{\pi}{6}\)
b) B= \(sin^2\frac{\pi}{6}+sin^2\frac{\pi}{3}+sin^2\frac{\pi}{4}+sin^2\frac{9\pi}{4}+tan\frac{\pi}{6}.cot\frac{\pi}{6}\)
c) C= \(cos^215+cos^225+cos^235+cos^245+cos^2105+cos^2115+cos^2125\)
Cho \(\cos\alpha=-\dfrac{2}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\). Biết \(K=\sin2\alpha+cos2\alpha=x+y\sqrt{5}\) với x, y thuộc Q và \(\dfrac{x}{y}=\dfrac{a}{b}\) là phân số tối giản. Tính \(a-b\)
Giúp em với , em kém lượng giác lắm ;; ;;
Tính giá trị biểu thức
a) A= \(sin^2\frac{\pi}{3}+sin^2\frac{\pi}{9}+sin^2\frac{7\pi}{18}+sin^2\frac{\pi}{6}\)
b) B= \(sin^2\frac{\pi}{6}+sin^2\frac{\pi}{3}+sin^2\frac{\pi}{4}+sin^2\frac{9\pi}{4}+tan\frac{\pi}{6}.cot\frac{\pi}{6}\)
c) C= \(cos^215+cos^225+cos^235+cos^245+cos^2105+cos^2115+cos^2125\)
1/ Biểu thức: (nêu cách làm)
A = có kết quả thu gọn bằng: A.\(-\sin\alpha\) B.\(\sin\alpha\) C.\(-\cos\alpha\) D. \(\cos\alpha\) \(\cos\left(\alpha+26\pi\right)-2\sin\left(\alpha-7\pi\right)-\cot1,5\pi-\cos\left(\alpha+\frac{2003\pi}{2}\right)+\cos\left(\alpha-1,5\pi\right).\cot\left(\alpha-8\pi\right)\)
Rút gọn biểu thức
\(A=2sin\left(x-\frac{\pi}{2}\right)-2cos\left(5\pi+x\right)+tan^2\left(x-9\pi\right)-\frac{1}{cos^2\left(\pi+x\right)}\), giả sử cosx\(\ne\)0
Tính : \(A=sin\frac{\Pi}{24}.cos\frac{\Pi}{24}.cos\frac{\Pi}{12}\)