\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{6+7}{14}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2\)
\(=\left(\dfrac{13}{14}\right)^2\)
\(=\dfrac{169}{196}\)
chúc p học tốt
\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{6+7}{14}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
\(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2\)
\(=\left(\dfrac{13}{14}\right)^2\)
\(=\dfrac{169}{196}\)
chúc p học tốt
tính nhanh
B = 1/5 - 3/7 + 5/9 - 2/11+ 7/13 - 9/16 -7/13 +2/11 - 5/9 +3/7 -1/5
tính nhanh
B = 1/5 - 3/7 + 5/9- 2/11 +7/13 - 9/16 - 7/13 + 2/11 -5/9 +3/7 -1/5
tính nhanh
B = 1/5 - 3/7 + 5/9 - 2/11+ 7/13 - 9/16 -7/13 +2/11 - 5/9 +3/7 -1/5
tính :
a) \(\frac{4}{9}:\frac{-1}{7}+6\frac{5}{9}:\frac{-1}{7}\)
b) \(\left(2\frac{1}{3}+3\frac{1}{2}\right):\left(-4\frac{1}{6}+3\frac{1}{7}\right)+7\frac{1}{2}\)
c) \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
tính 1 cách hợp lí nhất :
a)-1\(\frac{5}{7}\)*15+2/7*(-15)+(-105)*(2/3-4/5+1/7)
b)2/3+3/4*-4/9
c)(3/4-0,2)*(0,4-4/5)
Thực hiện phép tính ( tính nhanh nếu có thể ):
a, ( -3/4 + 5/13 ) : 2/7 - ( 9/4 + 8/13 ) : 2/7
b, (-12 . 2/7 + 8/9 : 7/2 - 2/7 . 5/18 ) . 7/2
c, 45/4 - ( 19/7 + 21/4 )
d, -1/4 . 152/11 - 0,25 . 68/11
1, Tìm x
a, (3x^2-50)^2=5^4
2, Rút gọn
a, (3^4-3^3)^4/27^3
b, 25^3/(5^5-5^3)^2
3, Thực hiện phép tính
a, (-1/3)^2 . 9 - (1/2)^3 .16 +(2:1/2^2)
b, (3/7)^10 . (7^5)^9 : (9/25)^5
c, (0,25)^5 . 2^11 : (1/3)^2
bài 3 : Tính nhanh:
B= \(\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
9/1+8/2+7/3+...+2/8+1/9=????????
Tính thuận tiện nha
Tính giá trị biểu thức:
A = \(\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}\) B = \(16\frac{2}{7}:\left(-\frac{3}{5}\right)-28\frac{2}{7}:\left(-\frac{3}{5}\right)\)
C = 25.\(\left(-\frac{1}{3}\right)^3+\frac{1}{5}-2.\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)