Câu 3 : Giác các bất phương trình sau
a , \(\frac{2}{x-1}< \frac{5}{2x-1}\)
b , \(\frac{1}{x+1}< \frac{1}{\left(x-1\right)^2}\)
c , \(\frac{1}{x}+\frac{2}{x+4}< \frac{3}{x+3}\)
d , \(\frac{x^2-3x+1}{x^2-1}< 1\)
e , \(\frac{3}{2-x}< 1\)
f , \(\frac{x^2+x-3}{x^2-4}\ge1\)
g , \(\frac{1}{x-1}+\frac{1}{x+2}>\frac{1}{x-2}\)
h , \(\frac{3x-4}{x-2}>1\)
i , \(\frac{2x-5}{2-x}\ge-1\)
k , \(\frac{-4}{3x+1}< \frac{3}{2-x}\)
l , \(\frac{2}{x-3}+\frac{4}{x+3}\le\frac{5x-1}{x^2-9}\)
m , \(\frac{x+1}{18}+\frac{-2x+1}{9}\le1\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
1, √x^2-5x+8<=3x-10
2, x^2-4x+3/3-2x<1-x
3, |x^2+x-2|+3x^2-3>0
4, |x+3|>=2(1+x^2)
5, |x^2-1|>x^2+2x-3
6, |2x-1|<x+2
7, 3/2-x<=1
8, 2+3x-x^2<=√4+3x-x^2
9, √x^2-5x+6<5-x
10, x^2-6>5(x+√x^2-5x)
11, |x^2-x|<=x^2-x
1.|2x-1|≤x+2
2.(m+2)x² -3x+2m-3
3.5x-1>2x/5+3
4.(2x+1)² -3(x-3)>4x²+10
5.1<1/1-x
6.(x-5)²(x-3)/x+1≤0
cho S = 1/22 + 1/32 + 1/42 + ... + 1/92.
CMR: 2/5 < S < 8/9
Giải các bất phương trình sau:
1) \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
2) \(\sqrt{2x^2-6x+8}-\sqrt{x}\le x-2\)
3) \(4\left(x+1\right)^2< \left(2x+10\right)\left(1-\sqrt{3+2x}\right)\)
4) \(4\sqrt{x+1}+2\sqrt{2x+3}\le\left(x-1\right)\left(x^2-2\right)\)
1. Thực hiện các phép tính:
a) (-7x^2)(3x^2-x-2)
b) (2x^3-3x^2-10x+3):(x-3)
2. Rút gọn các biểu thức:
a) (x-3)(x^2+1)-(x-3)(x^2+3x+9)
b) (2x+1)^2+(2x-1)^2+2(4x^2-1)
3. Phân tích các đa thức sao thành nhân tử
a) x^3-x^2-x+1
b)3x^2-7x-10
4.
a)Tìm a để x^3-3x^2+5x+1 chia hết cho (x-2)
b) Chứng tỏ rằng 4x^2-12xy+10y^2 ≥0 với mọi x và y
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
Giải bất phương trình:
a) \(\frac{1-\sqrt{21-4x-x^2}}{x+4}< \frac{1}{2}\)
b) \(\frac{1-\sqrt{8x-3}}{4x}\ge4\)
c) \(4\left(x+1\right)^2\le\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
d) \(\left(\sqrt{x+4}+2\right)\left(\sqrt{2x+6}-1\right)< x\)