Tìm x;y; z biết
\(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|\)
Cho x, y, z thỏa mãn \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\). Chứng minh rằng: \(\left(x-z\right)^3=8\cdot\left(x-y\right)^2\left(y-z\right)\)
Tìm các số(nghiệm) x , y , z trong phương trình sau :
\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
Tìm các số nguyên dương x; y; z thoả mãn: \(\left(x-y\right)^3+\left(y-z\right)^2+2015.\left|x-z\right|=2017\)
chứng minh rằng không có 3 số x,y,z thỏa mãn\(\left\{\begin{matrix}\left|x\right|< \left|y-z\right|\\\left|y\right|< \left|z-x\right|\\\left|x\right|< \left|x-y\right|\end{matrix}\right.\):
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x=\frac{1}{20}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
2. Tìm x, y, z biết\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
3.Tìm x\(a,2009-\left|x-2009\right|=x\)
\(b,\left|3x+2\right|=\left|5x-3\right|\)
cho \(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
cmr\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
1. Chứng tỏ rằng: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
2. Tìm các số nguyên x, y, z, t sao cho:
\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2011\)