cho x,y,z>0 và x+y+z=6.chứng minh:\(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Cho x, y, z >0. CMR:
a) \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)
b) \(3\left(x^8+y^8+z^8\right)\ge\left(x^3+y^3+z^3\right)\left(x^5+y^5+z^5\right)\)
Tìm x,y,z biết:
a.\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
b.\(\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}=\dfrac{1}{2}\left(x+y+z\right)\)
Biết x >= y >=z, x+y+z=0 và \(x^{^{ }2}+y^2+z^2=6\)
Tìm giá trị lớn nhất của P=|(x-y)(y-z)(z-x)|
a, Tìm \(x,y,z\in Z\) biết: \(x^3+y^3+z^3=x+y+z+2020\)
b, Cho \(A=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\) \(\left(x,y,z\in Z\right)\). Chứng minh rằng: Nếu \(x+y+z⋮6\) thì \(A-3xyz⋮6\)
Cho x, y, z > 0; \(xyz=1\). Chứng minh rằng: \(\dfrac{x^9+y^9}{x^6+x^3y^3+y^6}+\dfrac{y^6+z^6}{y^6+y^3z^3+z^6}+\dfrac{z^6+x^6}{z^6+z^3x^3+x^6}\)
cho \(x,y,z\ge0\) thỏa mãn \(x+y+z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2+y^2+z^2\)
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\) biết rằng \(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\)