Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Hà Nhi

Tìm x,y,z biết: \(x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=6\)

TNA Atula
22 tháng 2 2018 lúc 14:58

\(\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+\left(z^2+\dfrac{1}{z^2}\right)=6\)

=> VT≥\(2.\sqrt{x^2.\dfrac{1}{x^2}}+2.\sqrt{y^2.\dfrac{1}{y^2}}+2.\sqrt{z^2.\dfrac{1}{z^2}}\)

= 2+2+2=6

Dau bang xay ra khi: \(\left\{{}\begin{matrix}x^2=\dfrac{1}{x^2}\\y^2=\dfrac{1}{y^2}\\z^2=\dfrac{1}{z^2}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Hoàng Anh Thư
22 tháng 2 2018 lúc 15:03
\(x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=6\) =>\(\left(x^2+2+\dfrac{1}{x^2}\right)+\left(y^2+2+\dfrac{1}{y^2}\right)+\left(z^2+2+\dfrac{1}{z^2}\right)=0\) =>\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2=0\) =>\(\left(\dfrac{x^2+1}{x}\right)^2+\left(\dfrac{y^{^2}+1}{y}\right)^2+\left(\dfrac{z^2+1}{z}\right)^2=0\) x^2+1=0=>x^2=-1 y^2+1=0=>y^2=-1 z^2+1=0=>z^2=-1 =>x,y,z k có gt thỏa mãn tớ k chắc cho lắm ==

Các câu hỏi tương tự
crewmate
Xem chi tiết
Thuy Khuat
Xem chi tiết
Xuan Tran
Xem chi tiết
Bùi Nhật Anh
Xem chi tiết
 nguyễn hà
Xem chi tiết
trần thị tố uyên
Xem chi tiết
dream
Xem chi tiết
Luchia
Xem chi tiết
Xuan Tran
Xem chi tiết