Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Tìm \(x;y\in N\)tmãn : \(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)

2, Rút gọn bt

\(P=\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

b, gpt : \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)

3, cho x>1 ; y>0 , cm

\(\dfrac{1}{\left(x+1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)

Unruly Kid

Unruly Kid
4 tháng 12 2017 lúc 19:39

Đặt VT là T

Áp dụng AM-GM cho 3 số dương, ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(T\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)(đpcm)

Unruly Kid
4 tháng 12 2017 lúc 19:46

\(P=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{.....}+\dfrac{x+2}{....}\)

\(=\dfrac{\sqrt{x^3}+2x+2\sqrt{x}-2+x+2}{.....}=\dfrac{\sqrt{x^3}+3x+2\sqrt{x}}{....}\)

\(=\dfrac{\sqrt{x}\left(x+3\sqrt{x}+2\right)}{....}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{....}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

P/S: Chú ý điều kiện khi rút gọn, tự tìm.

Nguyễn Quỳnh
4 tháng 12 2017 lúc 19:59

2)

P = \(\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\) với \(x>0;x\ne1\)

\(\Rightarrow P=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

= \(\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)= \(\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-1\right)+\left(x+2\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

= \(\dfrac{x\sqrt{x}+2x+2\sqrt{x}-2+x+2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{x\sqrt{x}+3x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Unruly Kid
4 tháng 12 2017 lúc 20:20

b) ĐK: \(x\ge0\)

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)

\(\Leftrightarrow x^2+2\sqrt{x^3}-2\sqrt{x}-x\sqrt{x}-2\sqrt{x^3}-4x+4+2x=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x^3}+2x-2-x\right)-2\left(\sqrt{x^3}+2x-2-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x^3}+x-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}+2\right)=0\)

Dễ thấy \(x+2\sqrt{x}+2>0\)

Suy ra: \(\left[{}\begin{matrix}\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\\\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\end{matrix}\right.\)(TMĐK)

Vậy: \(S=\left\{1;4\right\}\)


Các câu hỏi tương tự
Quyên Teo
Xem chi tiết
truong thao my
Xem chi tiết
Quynh Existn
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Quyên Bùi
Xem chi tiết
Thanh Trà
Xem chi tiết
Lê Hồng Anh
Xem chi tiết
Quynh Existn
Xem chi tiết
armanto
Xem chi tiết