a) \(\left(x+4\right)\left(x\cdot x+1\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x\notin R\end{matrix}\right.\)
\(\Rightarrow x=-4\)
Vậy \(x=-4\)
b) \(\left(\left|x\right|+2\right)\left(x\cdot x-1\right)=0\)
\(\Rightarrow\left(\left|x\right|+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x\right|+2=0\\x^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=1\\x=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy \(x_1=-1;x_2=1\)
Tìm x \(\in\)Z
a) (x+4)(x.x+1)=0
(x+4)(x2+1)=0
<=>x+4 và x2+1=0
Nếu x+4=0=>x=-4
Nếu x2+1=0=>x2=-1(ko có giá tri)
Vậy...
b)(|x|+2)(x.x-1)=0
(|x|+2)(x2-1)=0
<=>|x|+2 và x2-1=0
+|x|+2=0=>|x|=-2(không tồn tại)
+x2-1=0=>x2=1=>x={1;-1}
Vậy....
a)\(\left(x+4\right)\left(x\cdot x+1\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow x=-4\)
Vậy \(x=-4\).
b)\(\left(\left|x\right|+2\right)\left(x\cdot x-1\right)=0\)
\(\Rightarrow\left(\left|x\right|+2\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x\right|+2=0\\x^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x=1\\x=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\).